
ELLIPTIC CURVE CRYPTOGRAPHY



Public Key Cryptography

 Components
 Public Key,

 Private Key

 Set of Operators that work on these Keys

 Predefined Constraints (required by some algorithms)



Elliptic Curve Cryptography

 Components

Private Key Public Key Set of Operations Domain Parameters
(Predefined constants)

A random
number

Point on a curve

= Private Key * G

These are defined over 
the curve
y2 = x3 + ax + b,
where 4a3 + 27b2 ≠ 0

G, a, b



Discrete Logarithm Problem (DLP)

 Let P and Q be two points on the elliptic curve
 Such that Q = kP, where k is a scalar value

 DLP: Given P and Q, find k?
 If k is very large, it becomes computationally infeasible

 The security of ECC depends on the difficulty of DLP

 Main operation in ECC is Point Multiplication



Point Multiplication

 Point Multiplication is achieved by two basic curve 
operations:

1. Point Addition, L = J + K

2. Point Doubling, L = 2J

Example: 

If k = 23; then, kP = 23*P

= 2(2(2(2P) + P) + P) + P



Point Addition

Geometrical explanation:



Point Addition

 Analytical explanation:

 Consider two distinct points J and K such that J = (xJ, yJ) 
and K = (xK, yK)

Let L = J + K where L = (xL, yL), then

 xL = s2 - xJ – xK

 yL = -yJ + s (xJ – xL)

s = (yJ – yK)/(xJ – xK), s is slope of the line through J and K



Point Doubling

Geometrical explanation:



Point Doubling

 Analytical explanation

Consider a point J such that J = (xJ, yJ), where yJ ≠ 0

Let L = 2J where L = (xL, yL), Then

 xL = s2 – 2xJ

 yL = -yJ + s(xJ - xL)

s = (3xJ
2 + a) / (2yJ), s is the tangent at point J and a is one of 

the parameters chosen with the elliptic curve



Finite Fields

 The Elliptic curve operations shown were on real numbers
 Issue: operations are slow and inaccurate due to round-off errors

 To make operations more efficient and accurate, the 
curve is defined over two finite fields

1. Prime field Fpand

2. Binary field F2
m

 The field is chosen with finitely large number of points 
suited for cryptographic operations



EC on Prime field Fp

 Elliptic Curve equation:

y2 mod p= x3 + ax + b mod p

where 4a3 + 27b2 mod p ≠ 0.

 Elements of finite fields are integers between 0 and p-1

 The prime number p is chosen such that there is finitely 
large number of points on the elliptic curve to make the 
cryptosystem secure. 

 SEC specifies curves with p ranging between 112-521 bits



EC on Binary field F2
m

 Elliptic Curve equation:

y2 + xy = x3 + ax2 + b, 

where b ≠ 0

 Here the elements of the finite field are integers of length 
at most m bits.

 In binary polynomial the coefficients can only be 0 or 1.

 The m is chosen such that there is finitely large number 
of points on the elliptic curve to make the cryptosystem 
secure. 

 SEC specifies curves with m ranging between 113-571 bits



Elliptic Curve Domain parameters

Domain parameters for EC over field Fp

 Parameters: 

p, a, b, G, n and h.

Domain parameters for EC over field F2
m

 Parameters:

m, f(x), a, b, G, n and h.



Implementations

 ECDSA - Elliptic Curve Digital Signature Algorithm

Signature Generation:
For signing a message m by sender A, using A’s private key dA

and public key QA = dA * G

1. Calculate e = HASH (m), where HASH is a cryptographic hash function, such as

SHA-1

2. Select a random integer k from [1,n − 1]

3. Calculate r = x1 (mod n), where (x1, y1) = k * G. If r = 0, go to step 2

4. Calculate s = k − 1(e + dAr)(mod n). If s = 0, go to step 2

5. The signature is the pair (r, s)



Implementations

 ECDSA - Elliptic Curve Digital Signature Algorithm

Signature Verification:
For B to authenticate A's signature, B must have A’s public key QA

1. Verify that r and s are integers in [1,n − 1]. If not, the signature is invalid

2. Calculate e = HASH (m), where HASH is the same function used in the 
signature generation

3. Calculate w = s −1 (mod n)

4. Calculate u1 = ew (mod n) and u2 = rw (mod n)

5. Calculate (x1, y1) = u1G + u2QA

6. The signature is valid if x1 = r(mod n), invalid otherwise



Implementations

 ECDH – Elliptic Curve Diffie Hellman

A (QA,dA) – Public, Private Key pair

B (QB,dB) – Public, Private Key pair

1. The end A computes K = (xK, yK) = dA * QB

2. The end B computes L = (xL, yL) = dB * QA

3. Since dAQB = dAdBG = dBdAG = dBQA. Therefore K = L 

and hence xK = xL

4. Hence the shared secret is xK


