ELLIPTIC CURVE CRYPTOGRAPHY

Public Key Cryptography

- Components
- Public Key,
- Private Key
- Set of Operators that work on these Keys
- Predefined Constraints (required by some algorithms)

Elliptic Curve Cryptography

- Components

Private Key	Public Key	Set of Operations	Domain Parameters (Predefined constants)
A random number	Point on a curve	These are defined over the curve	G, a, b
= Private Key $* G$	$\mathbf{y}^{2}=\mathbf{x}^{3}+\mathbf{a x}+\mathbf{b}$, where $\mathbf{4} \mathbf{a}^{3}+\mathbf{2 7} \mathbf{b}^{2} \neq \mathbf{0}$		

Discrete Logarithm Problem (DLP)

- Let P and Q be two points on the elliptic curve
- Such that $\mathrm{Q}=\mathrm{kP}$, where k is a scalar value
- DLP: Given P and Q, find k ?
- If k is very large, it becomes computationally infeasible
- The security of ECC depends on the difficulty of DLP
- Main operation in ECC is Point Multiplication

Point Multiplication

- Point Multiplication is achieved by two basic curve operations:

1. Point Addition, $\mathrm{L}=\mathrm{J}+\mathrm{K}$
2. Point Doubling, $L=2 J$

Example:
If $k=23 ; \quad$ then, $k P=23 * P$

$$
=2(2(2(2 P)+P)+P)+P
$$

Point Addition

Geometrical explanation:

(a)

(b)

Point Addition

- Analytical explanation:

- Consider two distinct points J and K such that $\mathrm{J}=\left(\mathrm{x}_{\mathrm{J}}, \mathrm{y}_{\mathrm{J}}\right)$ and $K=\left(x_{K}, y_{K}\right)$
Let $L=J+K$ where $L=\left(x_{L}, y_{L}\right)$, then
- $X_{L}=s^{2}-X_{J}-X_{K}$
- $y_{L}=-y_{J}+s\left(x_{J}-x_{L}\right)$
$s=\left(y_{J}-y_{k}\right) /\left(x_{J}-x_{K}\right)$, s is slope of the line through J and K

Point Doubling

Geometrical explanation:

(a)

(b)

Point Doubling

- Analytical explanation

Consider a point J such that $\mathrm{J}=\left(\mathrm{x}_{\mathrm{J}}, \mathrm{y}_{\mathrm{J}}\right)$, where $\mathrm{y}_{\mathrm{J}} \neq 0$
Let $L=2 J$ where $L=\left(x_{L}, y_{L}\right)$, Then

- $x_{L}=s^{2}-2 x_{J}$
- $y_{L}=-y_{J}+s\left(x_{J}-x_{L}\right)$
$s=\left(3 x_{J}^{2}+a\right) /\left(2 y_{J}\right), s$ is the tangent at point J and a is one of the parameters chosen with the elliptic curve

Finite Fields

- The Elliptic curve operations shown were on real numbers
- Issue: operations are slow and inaccurate due to round-off errors
- To make operations more efficient and accurate, the curve is defined over two finite fields

1. Prime field F_{p} and
2. Binary field $F_{2}{ }^{m}$

- The field is chosen with finitely large number of points suited for cryptographic operations

EC on Prime field F_{p}

- Elliptic Curve equation:

$$
\begin{aligned}
& y^{2} \bmod p=x^{3}+a x+b \bmod p \\
& \text { where } 4 a^{3}+27 b^{2} \bmod p \neq 0 .
\end{aligned}
$$

- Elements of finite fields are integers between 0 and $p-1$
- The prime number p is chosen such that there is finitely large number of points on the elliptic curve to make the cryptosystem secure.
- SEC specifies curves with p ranging between 112-521 bits

EC on Binary field $\mathrm{F}_{2}{ }^{m}$

- Elliptic Curve equation:

$$
\begin{aligned}
& y^{2}+x y=x^{3}+a x^{2}+b, \\
& \text { where } b \neq 0
\end{aligned}
$$

- Here the elements of the finite field are integers of length at most \mathbf{m} bits.
- In binary polynomial the coefficients can only be 0 or 1 .
- The \mathbf{m} is chosen such that there is finitely large number of points on the elliptic curve to make the cryptosystem secure.
- SEC specifies curves with \mathbf{m} ranging between 113-571 bits

Elliptic Curve Domain parameters

Domain parameters for EC over field F_{p}

- Parameters:
$\mathrm{p}, \mathrm{a}, \mathrm{b}, \mathrm{G}, \mathrm{n}$ and h .

Domain parameters for EC over field $\mathrm{F}_{\mathbf{2}}{ }^{m}$

- Parameters:
$\mathrm{m}, \mathrm{f}(\mathrm{x}), \mathrm{a}, \mathrm{b}, \mathrm{G}, \mathrm{n}$ and h .

Implementations

- ECDSA - Elliptic Curve Digital Signature Algorithm

Signature Generation:
For signing a message m by sender A, using A's private key d_{A} and public key $Q_{A}=d_{A} * G$

1. Calculate $\mathrm{e}=\mathrm{HASH}(\mathrm{m})$, where HASH is a cryptographic hash function, such as SHA-1
2. Select a random integer k from [1, $n-1$]
3. Calculate $r=x_{1}(\bmod n)$, where $\left(x_{1}, y_{1}\right)=k * G$. If $r=0$, go to step 2
4. Calculate $s=k^{-1}\left(e+d_{A} r\right)(\bmod n)$. If $s=0$, go to step 2
5. The signature is the pair (r, s)

Implementations

- ECDSA - Elliptic Curve Digital Signature Algorithm

Signature Verification:
For B to authenticate A 's signature, B must have A's public key Q_{A}

1. Verify that r and s are integers in $[1, n-1]$. If not, the signature is invalid
2. Calculate $e=$ HASH (m), where HASH is the same function used in the signature generation
3. Calculate $w=s^{-1}(\bmod n)$
4. Calculate $u_{1}=e w(\bmod n)$ and $u_{2}=r w(\bmod n)$
5. Calculate $\left(x_{1}, y_{1}\right)=u_{1} G+u_{2} Q_{A}$
6. The signature is valid if $x_{1}=r(\bmod n)$, invalid otherwise

Implementations

- ECDH - Elliptic Curve Diffie Hellman

A $\left(Q_{A}, d_{A}\right)$ - Public, Private Key pair
$B\left(Q_{B}, d_{B}\right)$ - Public, Private Key pair

1. The end A computes $K=\left(x_{K}, y_{K}\right)=d_{A}{ }^{*} Q_{B}$
2. The end B computes $L=\left(x_{L}, y_{L}\right)=d_{B} * Q_{A}$
3. Since $d_{A} Q_{B}=d_{A} d_{B} G=d_{B} d_{A} G=d_{B} Q_{A}$. Therefore $K=L$ and hence $X_{K}=x_{L}$
4. Hence the shared secret is x_{k}
