
ELLIPTIC CURVE CRYPTOGRAPHY



Public Key Cryptography

 Components
 Public Key,

 Private Key

 Set of Operators that work on these Keys

 Predefined Constraints (required by some algorithms)



Elliptic Curve Cryptography

 Components

Private Key Public Key Set of Operations Domain Parameters
(Predefined constants)

A random
number

Point on a curve

= Private Key * G

These are defined over 
the curve
y2 = x3 + ax + b,
where 4a3 + 27b2 ≠ 0

G, a, b



Discrete Logarithm Problem (DLP)

 Let P and Q be two points on the elliptic curve
 Such that Q = kP, where k is a scalar value

 DLP: Given P and Q, find k?
 If k is very large, it becomes computationally infeasible

 The security of ECC depends on the difficulty of DLP

 Main operation in ECC is Point Multiplication



Point Multiplication

 Point Multiplication is achieved by two basic curve 
operations:

1. Point Addition, L = J + K

2. Point Doubling, L = 2J

Example: 

If k = 23; then, kP = 23*P

= 2(2(2(2P) + P) + P) + P



Point Addition

Geometrical explanation:



Point Addition

 Analytical explanation:

 Consider two distinct points J and K such that J = (xJ, yJ) 
and K = (xK, yK)

Let L = J + K where L = (xL, yL), then

 xL = s2 - xJ – xK

 yL = -yJ + s (xJ – xL)

s = (yJ – yK)/(xJ – xK), s is slope of the line through J and K



Point Doubling

Geometrical explanation:



Point Doubling

 Analytical explanation

Consider a point J such that J = (xJ, yJ), where yJ ≠ 0

Let L = 2J where L = (xL, yL), Then

 xL = s2 – 2xJ

 yL = -yJ + s(xJ - xL)

s = (3xJ
2 + a) / (2yJ), s is the tangent at point J and a is one of 

the parameters chosen with the elliptic curve



Finite Fields

 The Elliptic curve operations shown were on real numbers
 Issue: operations are slow and inaccurate due to round-off errors

 To make operations more efficient and accurate, the 
curve is defined over two finite fields

1. Prime field Fpand

2. Binary field F2
m

 The field is chosen with finitely large number of points 
suited for cryptographic operations



EC on Prime field Fp

 Elliptic Curve equation:

y2 mod p= x3 + ax + b mod p

where 4a3 + 27b2 mod p ≠ 0.

 Elements of finite fields are integers between 0 and p-1

 The prime number p is chosen such that there is finitely 
large number of points on the elliptic curve to make the 
cryptosystem secure. 

 SEC specifies curves with p ranging between 112-521 bits



EC on Binary field F2
m

 Elliptic Curve equation:

y2 + xy = x3 + ax2 + b, 

where b ≠ 0

 Here the elements of the finite field are integers of length 
at most m bits.

 In binary polynomial the coefficients can only be 0 or 1.

 The m is chosen such that there is finitely large number 
of points on the elliptic curve to make the cryptosystem 
secure. 

 SEC specifies curves with m ranging between 113-571 bits



Elliptic Curve Domain parameters

Domain parameters for EC over field Fp

 Parameters: 

p, a, b, G, n and h.

Domain parameters for EC over field F2
m

 Parameters:

m, f(x), a, b, G, n and h.



Implementations

 ECDSA - Elliptic Curve Digital Signature Algorithm

Signature Generation:
For signing a message m by sender A, using A’s private key dA

and public key QA = dA * G

1. Calculate e = HASH (m), where HASH is a cryptographic hash function, such as

SHA-1

2. Select a random integer k from [1,n − 1]

3. Calculate r = x1 (mod n), where (x1, y1) = k * G. If r = 0, go to step 2

4. Calculate s = k − 1(e + dAr)(mod n). If s = 0, go to step 2

5. The signature is the pair (r, s)



Implementations

 ECDSA - Elliptic Curve Digital Signature Algorithm

Signature Verification:
For B to authenticate A's signature, B must have A’s public key QA

1. Verify that r and s are integers in [1,n − 1]. If not, the signature is invalid

2. Calculate e = HASH (m), where HASH is the same function used in the 
signature generation

3. Calculate w = s −1 (mod n)

4. Calculate u1 = ew (mod n) and u2 = rw (mod n)

5. Calculate (x1, y1) = u1G + u2QA

6. The signature is valid if x1 = r(mod n), invalid otherwise



Implementations

 ECDH – Elliptic Curve Diffie Hellman

A (QA,dA) – Public, Private Key pair

B (QB,dB) – Public, Private Key pair

1. The end A computes K = (xK, yK) = dA * QB

2. The end B computes L = (xL, yL) = dB * QA

3. Since dAQB = dAdBG = dBdAG = dBQA. Therefore K = L 

and hence xK = xL

4. Hence the shared secret is xK


