ELLIPTIC CURVE CRYPTOGRAPHY

Public Key Cryptography

Components

- Public Key,
- O Private Key
- Set of Operators that work on these Keys
- Predefined Constraints (required by some algorithms)

Elliptic Curve Cryptography

Components

Private Key	Public Key	Set of Operations	Domain Parameters (Predefined constants)
A random number	Point on a curve = Private Key * G	These are defined over the curve $y^2 = x^3 + ax + b$, where $4a^3 + 27b^2 \neq 0$	G, a, b

Discrete Logarithm Problem (DLP)

Let P and Q be two points on the elliptic curve
 Such that Q = kP, where k is a scalar value

DLP: Given P and Q, find k?
 If k is very large, it becomes computationally infeasible

• The security of ECC depends on the difficulty of DLP

Main operation in ECC is Point Multiplication

Point Multiplication

- Point Multiplication is achieved by two basic curve operations:
- 1. Point Addition, L = J + K
- 2. Point Doubling, L = 2J

Example:

- If k = 23; then, kP = 23*P
 - = 2(2(2(2P) + P) + P) + P)

Point Addition

Geometrical explanation:

Point Addition

Analytical explanation:

- Consider two distinct points J and K such that J = (x_J, y_J) and K = (x_K, y_K)
- Let L = J + K where $L = (x_L, y_L)$, then

•
$$x_L = s^2 - x_J - x_K$$

•
$$y_{L} = -y_{J} + s (x_{J} - x_{L})$$

 $s = (y_J - y_K)/(x_J - x_K)$, s is slope of the line through J and K

Point Doubling

Geometrical explanation:

Point Doubling

Analytical explanation

Consider a point J such that $J = (x_J, y_J)$, where $y_J \neq 0$

Let L = 2J where L = (x_L, y_L) , Then

•
$$x_L = s^2 - 2x_J$$

•
$$y_{L} = -y_{J} + s(x_{J} - x_{L})$$

s = $(3x_J^2 + a) / (2y_J)$, s is the tangent at point J and a is one of the parameters chosen with the elliptic curve

Finite Fields

- The Elliptic curve operations shown were on real numbers
 Issue: operations are slow and inaccurate due to round-off errors
- To make operations more efficient and accurate, the curve is defined over two finite fields
- 1. Prime field F_p and
- 2. Binary field F₂^m
- The field is chosen with finitely large number of points suited for cryptographic operations

EC on Prime field F_p

• Elliptic Curve equation:

 $y^2 \mod p = x^3 + ax + b \mod p$ where $4a^3 + 27b^2 \mod p \neq 0$.

- Elements of finite fields are integers between 0 and p-1
- The prime number p is chosen such that there is finitely large number of points on the elliptic curve to make the cryptosystem secure.
- SEC specifies curves with p ranging between 112-521 bits

EC on Binary field F_2^{m}

Elliptic Curve equation:
 y² + xy = x³ + ax² + b,
 where b ≠ 0

- Here the elements of the finite field are integers of length at most m bits.
- In binary polynomial the coefficients can only be 0 or 1.
- The **m** is chosen such that there is finitely large number of points on the elliptic curve to make the cryptosystem secure.
- SEC specifies curves with **m** ranging between 113-571 bits

Elliptic Curve Domain parameters

Domain parameters for EC over field F_p

- Parameters:
 - p, a, b, G, n and h.

Domain parameters for EC over field F₂^m

• Parameters:

```
m, f(x), a, b, G, n and h.
```

Implementations

ECDSA - Elliptic Curve Digital Signature Algorithm

Signature Generation:

For signing a message m by sender A, using A's private key d_A

and public key $Q_A = d_A * G$

1. Calculate e = HASH (m), where HASH is a cryptographic hash function, such as SHA-1

- 2. Select a random integer k from [1,n 1]
- 3. Calculate $r = x_1 \pmod{n}$, where $(x_1, y_1) = k * G$. If r = 0, go to step 2
- 4. Calculate $s = k^{-1}(e + d_A r) \pmod{n}$. If s = 0, go to step 2
- 5. The signature is the pair (r, s)

Implementations

ECDSA - Elliptic Curve Digital Signature Algorithm

Signature Verification:

For B to authenticate A's signature, B must have A's public key Q_A

- 1. Verify that r and s are integers in [1, n 1]. If not, the signature is invalid
- 2. Calculate e = HASH (m), where HASH is the same function used in the signature generation
- 3. Calculate w = s⁻¹ (mod n)
- 4. Calculate $u_1 = ew \pmod{n}$ and $u_2 = rw \pmod{n}$
- 5. Calculate $(x_1, y_1) = u_1G + u_2Q_A$
- 6. The signature is valid if $x_1 = r \pmod{n}$, invalid otherwise

Implementations

ECDH – Elliptic Curve Diffie Hellman

A $(Q_{A,}d_{A})$ – Public, Private Key pair B $(Q_{B,}d_{B})$ – Public, Private Key pair

- 1. The end A computes $K = (x_K, y_K) = d_A * Q_B$
- 2. The end B computes $L = (x_L, y_L) = d_B * Q_A$
- 3. Since $d_A Q_B = d_A d_B G = d_B d_A G = d_B Q_A$. Therefore K = L and hence $x_K = x_L$
- 4. Hence the shared secret is x_{κ}